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Abstract. An approach to automatic generation of a network of refer-
ence ‘views’ specifically structured for non-coordinate robot navigation is
presented. The reference views are selected from the input flow while the
robot moves along a random continuous trajectory in its environment.
The network is organized as an atlas that represents inner model of
the robot environment. It accumulates a ‘rich’ navigation knowledge
extracted from the flow of ‘poor’ views. No coordinate transformation is
involved, but fundamental topological concepts: the continuity of a robot
trajectory and discontinuities (‘heavy changes’) detected in the input
flow. Avoiding any explicit coordinate transformation becomes possible
using a local inversion of the knowledge hidden in the relation ‘robot
control – change of view’. Both techniques – the inversion and detection
of heavy changes – are specific for a particular robot architecture. The
approach was verified on a virtual static 2D-workspace.

Keywords: cognitive robotics, learning workspace from views, non-co-
ordinate environment modeling, visual navigation.

1 Introduction

This work is a step in a wider research about non-coordinate robot navigation.
It presents a biologically inspired approach that does not use coordinates of any
kind, neither for pointing a navigation goal, nor for an inner representation of
navigational knowledge. ‘Non-coordinate’ navigation used in this work, intends
to emphasize the fact that the commonly used term ‘non-Cartesian’ can still refer
to a coordinate system. The architecture proposed here covers both, the issue
of inner representation of geography, as well as learning the geography process
during exploration of the environment by robot.

Fig. 1 clarifies our goal. It shows a workspace with a virtual robot. The
workspace is static, bi-dimensional, and populated with obstacles. Fig. 1a shows
a supervisor’s view of an instance of such workspace with the robot shown as
a dark triangle. If the robot had a colour camera, its current view would be as
shown in Fig. 1b. But instead, robot has a sensor of 1D range images that scans
all directions in a 1D field of view and measures the distance to the first obstacle
along each direction, so the robot view for the same scene is shown in Fig. 1c.
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Note that the distances represented by such views are not crude, but somehow
transformed due to technological reasons related to OpenGL.

The single view in Fig. 1a provides a human with full information about
geography of the environment, but the robot, at any time, has a much poorer
input: the one similar to the shown in Fig. 1c. By processing a flow of such ‘poor’
views, is constructed a data structure that contains a complete information about
the geography, equivalent to the one in Fig. 1a.

The inner workspace model of the robot is constructed as a set of reference
views from the input flow and is organized as an atlas of ‘neighbourhoods’.

(a)

(b)

(c)

Fig. 1. Three views for the same “robot-in-environment” scene: (a) A supervisor’s
view; the robot position and orientation is shown by a dark triangle at the bottom; the
dashed line is commented in Section 4. (b) A robocentric view by a colour camera. (c)
A robocentric view from a sensor of 1D range image. The lines between (a) and (b),
and between (b) and (c) connect the same objects on corresponding views.
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The process of learning the geography is based on driving the robot along a
continuous random trajectory and an analysis of the input flow of such views; at
the beginning, the inner model of workspace is initialized to a single reference
view that corresponds to an initial robot position on the scene. A test over any
pair of views, being applied to the pairs of adjacent views of the input flow, is
aimed to show semantic discontinuities in the flow. The positive responses of
the test are called ‘heavy changes’. Each neighbourhood is formed by a set of
views with no heavy change between them; the data structure that represents
a neighbourhood contains also information about entrances from and exits to
other neighbourhoods. This network is a dynamic structure: it is subjected to the
inclusion of new reference views, linking them to neighbourhoods, adding new
neighbourhoods into atlas, adding links (entrances or exits) between adjacent
neighbourhoods and merging neighbourhoods after detecting a loop closure of
the robot trajectory in its workspace.

The network represents a graph-based component of the robot navigation
knowledge. It can be used for solving non-local navigation tasks, meanwhile for
the local navigation a vision-guided control is assumed. Retrieving a command
for a desirable change of views is performed by the Kohonen associative memory,
[15]. Training the memory is accomplished by a set of ‘cause–effect’ pairs {robot
command; change of views}.

Navigation assumes self-localization, in contrast to SLAM, localization in the
scope of presented approach is non-coordinate; it is performed as a permanent
task that at any moment generates a pair {Current Neighbourhood (CN); Cur-
rent Reference View (CRV)}, where the components, respectively, stand for IDs
of the neighborhood which the current robot view belongs, and a reference view
in CN from which the current view can be reached by a robot control command.
An estimate of the command is constructed by associative memory.

For the sensor that produces images like the ones in Fig. 1c, estimation
of the robot control command for a desirable change of views is as follows:
The associative memory is represented as a vector with components indexed by
possible distances to objects in a view. The vector representation is required
because each object in the field of view responds non-linearly to a robot control
according to the distance to this object. For two views that determine a required
change of robot state, any pair of matching objects in them contributes with its
own impact into the estimate of the command. This impact is computed by a
component of the vector of associative memory that corresponds to a distance
to this particular object. Amount of all impacts gives the required estimate.

Heavy changes are the milestones for the non-coordinate navigation. Detec-
tion of heavy changes is sensor-dependent. A corresponding technique for the
views like in Fig. 1c was presented in [14]. The relation of heavy change helps to
associate the robot views with some neighborhoods of the atlas: two close views
generated on a continuous robot trajectory belong to the same neighborhood if
there is no heavy change between them, and vice versa.

This work focuses on the logic of creating the network of reference views, this
approach was tested using a new version of the software presented in [14].
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The rest of the paper is organized as follows: Section 2 offers a review of
previous works. Section 3 describes a logic for learning the inner model of
workspace. Section 4 describes the structure of software and experiments on
it. Section 5 contains conclusions.

2 Related Works

2.1 Non-Coordinate Navigation

The attempts to understand how the human brain tackles the navigation tasks
have been undertaken in numerous works during several decades, mainly in
psychology. In robotics, it is an active theme for more than two decades.

An approach to navigation of autonomous systems in semi-structured envi-
ronments using natural language is based on a model called Generalized Ground-
ing Graphs (G3) [19]. The robot must be trained beforehand for recognizing
basic elements like: events, objects, places and paths. Then they can be used
to express a navigational goal in natural language as “go to next corner of the
room”. Closer ideas can be found in [2], where the robot must complete a task
which involves identifying an object and a position in an unknown environment.
Once the task and object are identified, the robot must go to a specific location.
In this work the robot learns using imitation learning. In both works, navigation
does not deal with a coordinate space.

A graph based model for a non-coordinate vision-guided navigation was
proposed in [13]. Other works on this topic are [8,9,18]. The model presented in
[13] (so called GT-model) is formed by two graphs: G, which stands for the robot
vision-to-action knowledge, and T that represents a geography or administrative
system imposed on G. G alone is quite similar to the view graph of [8, 18], but
being enriched by geography graph T it obtains some new properties.

In formal terms, a GT-model is defined as pair {G, T}, where the components
satisfy the following properties:

- G = (VG, EG) is a directed graph with non-negative weights assigned to its
edges; intuitively, any node of VG stands for a set of close robot views and
implicitly it represents a subset in a space of all robot states; the edges of
EG stand for some control rules that drive robot from one set of close views
to other.

- T = (VT , ET ) is a directed graph with an unique source-node whereas
the set of its terminal nodes coincides with VG; the nodes of VT stand for
geographic entities of the robot space, whereas the edges of ET are just
inclusions indicating that one entity belongs to some other.

In these terms, for example, “Move robot from the Mexico City downtown
to the Computer Research Center”, means to drive robot from one set of views
(downtown) to another (CRC) by means of the rules from EG. Then, a formal-
ization of a non-coordinate navigation problem is as follows. Let α, β ∈ VT be
geographic entities and Vα, Vβ ⊂ VG be their respective domains. The problem
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is: Find a path in G with minimal summary weight that begins inside Vα and
ends inside Vβ . This problem is called the extended shortest path problem (espp).
So an espp means search of a best route that connects two sets from VG, however
not arbitrary ones but only those represented by some nodes of the geographic
graph T.

It turns out, [13], that a navigational problem in the form of espp under
some natural assumptions can be solved by a dynamic programming algorithm
of lower computational complexity than for a classic shortest path problem for
two nodes of graph G.

In spite of some advantages of the approach based on GT-model, its appli-
cation to robotics for the years after publication of [13] remained as an abstract
theory than a practical instrument due to the difficulties related to learning the
lowest, non-verbalizable level of geography.

Indeed, consider a geographic item that has an explicit name like North
America, Mexico City, The National Polytechnic Institute of Mexico, etc. It is
technically clear how to introduce such an item into a GT-model. But for the
lowest geographic level, each item should be represented by a data structure
that does not have neither a distinctive shape, nor a name. In this respect, this
work together with [14] represents a novel step to overcome obstacles for future
practical implementation of the non-coordinate approach to navigation of [13].

Note that in contrast to the verbalizable levels, the lowest-level geography
model is sensor-dependent: the higher levels can be the same, say, for a robot, a
blind person, as well as for a human who does not suffer any illness of sight; the
lowest level geography depends: for a blind person – on the stick which he/she
uses for exploration of the environment, for a normal person – on his/her vision.
This is why learning geography of the lowest level cannot be done in the same
way for all kinds of robots. But some common principles can be found.

2.2 SLAM and the Navigation Based on a Sketch of Path

The research line called Simultaneous Localization and Map Building (SLAM)
has a story of more than a three decades [4–6, 11]. The aim of this approach is
to convert a set of robocentric views into a single map. This ‘map’ is understood
in a traditional, Cartesian meaning so that a human could read and use it.
The SLAM techniques involve statistical methods including extended Kalman
filter [3] and Rao-Blackwellized particle filters [10]. They allow feeding the map
creation while the robot moves smoothly.

An approach to robot guidance in an indoor environment is presented in
[1]. As a human-robot interface, it makes use of a sketch of a required robot
path; the robot task in a sense is an inversion of SLAM: starting from a poor
quality map (sketch), identify its landmarks in the robocentric views, and use
them for guidance. The sketch can be regarded as a single-task-oriented, “light”
navigational model of environment. The recognition is simplified due to the
indoor specific.

We adopt here the, employed in many SLAM works, idea about treating
loops, [7, 12, 17]. Detection of a loop-closure in a robot trajectory increases
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drastically the precision of the map under construction. In the scope of our
approach, detected loops allow to improve adequateness of an inner model of
the workspace.

Note that a single 2D view in Fig. 1a is equivalent to a 2D map, however
this way of presentation of the workspace is chosen here not because of some
limitations of our approach but just for illustrative and testing purposes. A map
like in SLAM not always allows an adequate representation of geography of a
robot environment. For example, it is inadequate for an environment similar to
a 3D-maze, or for a mountain cave of a complex structure. On the opposite, the
approach presented in this work is not limited to a 2D-environment.

Nevertheless, we believe that ideas of SLAM are very fruitful to be combined
in future with our approach especially for facing the robot dynamics that are
disregarded yet in our experiments.

2.3 Detection of Heavy Changes

Robot state for the workspace of Fig. 1 can be regarded as the pair {robot
position; robot orientation}. From a topological point of view, while robot moves
smoothly in workspace, a path in the space of robot states is mapped contin-
uously into a space of robot views. Some qualitative changes in the flow of
views are declared as Heavy Changes (HCs). Detection of HCs helps to organize
the inner model of workspace. As it was mentioned in section 1, a particular
technique for detection of HCs depends on the robot architecture. What a HC
means depends also on a semantic interpretation of objects in a current view: for
instance, in the flow of range images like Fig. 1c, the dynamics of distant objects
is not as relevant for HC as that of close objects. Then, detection of HCs in
a border zone between different neighbourhoods provokes a natural instability
of outcome. In these circumstances, providing the robustness of the atlas of
neighbourhoods formed by reference views is not an elementary issue.

A method for tackling this issue was presented in [14] for the virtual world
of Fig. 1. There the flow of 1D range images is subjected to the processing
that combines a transformation of each image into a string of symbols of an
alphabet with comparison of such strings by means of a technique based on the
Levenshtein distance [16]. Note that the Levenshtein distance is known nowadays
mainly for its role in detection of plagiarism.

Any symbol of the string is constructed as a singular point, that is as a
discontinuity of the first or second derivative of the range image; the alphabet
of singular points to code a range image includes {STEP UP, STEP DOWN,
ANGLE TOWARD ROBOT, ANGLE OUTWARD ROBOT} with obvious in-
tuitive meaning for each option. Since this alphabet is rather short for reliable
comparison of the strings, each symbol is supplied with an extended descriptor
to reduce the probability of errors while taking a decision on occurrence of a HC.

Computation of the Levenshtein distance for two strings leads to so called
Editorial Prescription (EP) that describes a simplest transformation of one
string into another by means of some elementary operations over strings. If,
for example, EP is empty then the strings are equivalent and there is no HC

144

Josué Figueroa-González, Georgii Khachaturov, Juan M. Martínez-Hernández

Research in Computing Science 148(10), 2019 ISSN 1870-4069



between corresponding views; otherwise a decision on occurrence of HC is taken
by a deeper analysis of EP. We refer the readers to [14] for further details.

Note that this approach cannot be applied directly to 2D images because the
technique of Levenshtein is oriented exclusively toward processing the strings,
so in general the detection of HCs is an open field for future research.

3 Inner Model of Environment

We start with some preliminary comments on the kind of robot sensor.
In experiments we deal with 1D range images, however the term ‘views’

does not refer to this particular kind of sensor. Note that, although different
kinds of sensors generate views that seem qualitatively different, sometimes
their information impact is almost equivalent. For instance, conventional video
snapshots like in Fig. 1b can be chosen as an input flow and although such input
seems rather different from the range images, the extraction of the range data
virtually equivalent to that represented in Fig. 1c can be easily performed by
processing the colour views as the robot moves in its workspace.

It is quite reasonable not using crude but somehow post-processed views to
make them more robust about noise, illumination, etc., as well as more compact
for storing. For example, instead of the crude range images similar to Fig. 1c,
the strings described in section 2.3 are stored in our experiments.

The network of reference views mentioned in section 1 represents an inner
robot model of its environment. It is constructed as a set of robocentric views
specifically organized to meet navigation needs. The inner model comprises
two databases: VIEWS that stores the set of reference views and ATLAS that
imposes a kind of topology on VIEWS and represents them in the form of a set
of neighbourhoods.

Each neighbourhood comprises three sets: the set {b1,b2,...,bn }, where each
bi can be regarded as ID of a Reference View (RV) in VIEWS, the set of
entrances, and the set of exits.

The entrances and exits have the same format of pair {neighbourhood ID,
RV ID}, where the IDs refer to respective objects in ATLAS and VIEWS. For
an entrance, values of the components specify such objects from which the robot
can be moved to the Current View (CV) by a command, whereas for an exit
they stand for the objects to which the robot can be moved starting from a view
bi that belongs to the neighbourhood that owns the exit.

In its turn, the correspondence of a robot position to a neighbourhood of
ATLAS is the matter of the self-localization process mentioned in Section 1.
Mathematically, self-localization for non-coordinate navigation can be regarded
as correspondence: CV −→ {CN,CRV}.

All transformations of the inner model are carried out by a logic triggered just
at the moments when this correspondence fails to be established. The remainder
of this section presents this logic.

In a general case, CV does not belong to VIEWS, and hence it may not
belong to the set {b1,b2,...,bn } of CN. However for a correct self-localization in
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a workspace, the reachability of CV from a reference view bi is required. Under
the assumption that the robot state in the CN yields view bi the reachability
means that, a single robot control command exists that moves robot from bi to
the state at which the CV has been produced, in other words, to the current
state.

It is the task of the associative memory mentioned in Section 1 to construct
an estimate of such command starting from a view bi and CV. If the norm of
the estimate is greater than a threshold, such estimate is rejected. If the same is
true for all bi ∈ {b1,b2,...,bn }, the hypothesis of reachability of CV from CN is
rejected as well.

In the process of learning the inner robot model, supervisor randomly gener-
ates a succession of robot control commands. Robot executes each command and
gets a new CV; the new CV is subjected to analysis that leads to actualization
of self-localization pair {CN; CRV}, as well as to possible modifications of both
databases, ATLAS and VIEWS.

In this process, outcome of the following two tests completely determines
possible modifications of the model: the Test on Reachability (TR) of CV and
the Test on a Heavy Change (THC) between the previous view and CV.

A negative response of THC (no heavy change) means that CV corresponds
to the same CN as the previous one, and the set of neighbourhoods of ATLAS
remains the same. However, the result of TR is still important: VIEWS stays
unchanged for a positive response, but otherwise the previous view of the input
flow is added to VIEWS and included as a new element into set {b1,b2,...,bn }
of CN. Since CV has been just reached from the previous view by the current
robot command, this inclusion automatically provides the required reachability,
and the just added view becomes a new CRV.

For a positive response of THC (heavy change occurred) further logic follows
the block-diagram of Fig. 2: it starts from a straightforward search of an exit
among those already registered in CN. If an appropriate exit is found, then
CN must be substituted with the neighbourhood that the exit leads to. Just
as in the previous paragraph, actualization of CRV depends on the response of
TR: a positive response of TR is automatically accompanied with new CRV,
whereas for a negative response, CV is included into VIEWS and added to the
set of views of the actualized CN and CV becomes a new CRV since a view is
reachable from itself.

If the search of exits fails, still a chance remains that robot has completed a
long loop and returned back to an old neighbourhood. So search of loop closure
is executed: CV is subjected to THC and TR with respect to the views of old
neighbourhoods. For closure, it is necessary to find an old view with a negative
response from THC and a positive from TR. Unfortunately, this condition is
not enough to avoid errors completely: similar views can be perceived as distant
states of robot. To reduce the probability of these errors, too uniform views
can be filtered out from the search as unreliable; next, the sensor system of
the robot can be enriched by a virtual compass (a sensor of orientation), which
allows filtering out the candidates with a strongly different orientation than a
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Fig. 2. Block-diagram of transformation of the model after a heavy change.

current robot orientation. As an ultimate resource, robot can call supervisor for
help in doubtful cases.

If the search for loop closure fails, a new neighbourhood is introduced into
ATLAS and the CV becomes its unique view. A link is established between the
new neighbourhood and CN that is an entrance and exit are introduced into
respective neighbourhoods; and then CN is actualized to be the new neighbour-
hood.

Otherwise, if a loop is detected it is treated as follows. First, it is clear that the
CN turns out to be a new entrance to an Old Neighbourhood (ON), on which the
loop closure has just been detected. Hence a corresponding link – new entrance
to ON, new exit to CN – is introduced, but it is possible that this entrance is not
brand new because it had been introduced earlier to ON under a different ID. To
study this possibility, a view bi from CN is subjected successively to THC with
respect to the views of all entrances to ON. If an entrance E is found, whose
view component yields a negative response of THC, the hypothesis is accepted
that the neighbourhood component of E is identical to CN is accepted. Since the
views under consideration are topologically close each other, although the errors
of identification of views are still possible, their probability is much less than for
loop closure. As a consequence, CN and the neighbourhood indicated in E can
be merged into a single neighbourhood; depending on which neighbourhood is
chosen to absorb the other, one of the two neighbourhoods can be deleted from
ATLAS after merging. It also implies substitution of all references in ATLAS to
the deleted neighbourhood by the ones to the remaining neighbourhood.

The previous paragraph, in a simplified form, presents the idea of a surgery
of the inner model after a loop detection. In fact, a detected loop allows a deeper
surgery to be applied. Indeed, THC can be applied, for instance, to the entrances
of CN versus the entrances of entrances of E. Furthermore, the same idea can be
extended to the exits. It would help to establish more equivalent neighbourhoods
additionally to those of the previous paragraph.

Applying a deeper surgery makes the inner model to converge faster, but
even the simple surgery leads to the convergence of ATLAS: the model tends to
stabilize itself as the robot route becomes sufficiently dense in the workspace.
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4 Experiments

A newer version of the pilot software described in [14] was used for the experi-
ments. The functions implemented in the package include:

- Interactive creation of obstacles of the robot environment.

- Visualization of the environment and different kinds of robot views.

- Intuitive supervisor graphic interface for controlling robot.

- Training the Kohonen associative memory.

- Transformation of angle-distance plot to a string of singular points.

- Application of a technique based on the Levenshtein distance to the strings
of singular points for detection of a heavy change.

- Auto-localization process.

- Manipulations with the inner model of the environment.

- Serialization/Deserialization.

Using software comprises three stages: generation of obstacles inside the
workspace; training the associative memory and learning geography of the workspace.

For a generated workspace, just after the Kohonen associative memory has
been trained, the program automatically initializes: the robot position shown by
the triangle in Fig. 1a; the content of ATLAS of a unique neighbourhood and
the content of VIEWS to a unique view like the one in Fig. 1c.

Supervisor drives robot so that each mouse click is interpreted as a leading
point to be translated in a combination of rotation < 4◦ and displacement ahead
< 3% of the workspace size. About 80 commands are required to close a loop
shown by dashed line in Fig. 1a. The processing of each command of the sequence
follows the logic presented in Section 3.
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Fig. 3. Plot of statistics obtained during experiments.
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A typical experimental result of learning the workspace is illustrated by Fig.
3. It presents several statistics that show the dynamics of generation of the inner
model. The statistics are registered for a looped route that approximately follows
the dashed line of Fig. 1a. Supervisor leads the robot several times along the loop,
and the statistics are monitored as functions of the number of full revolutions.

The plotted statistics include the number of: (i) commands; (ii) neighbour-
hoods introduced into ATLAS; (iii) merged neighbourhoods; (iv) views intro-
duced into VIEWS. One additional plot shows the number of active neighbour-
hoods in ATLAS defined as ‘introduced neighbourhoods minus merged neigh-
bourhoods’ that is the difference (ii)–(iii). This plot shows an obvious tendency
for stabilization of the fragment responsible for the loop in question in the model
under construction.

5 Conclusions

The presented approach for a robot learning from its workspace employs a graph-
based model ideologically similar to the view graph, [8, 18], or the graph G of
the GT-model, [13]. The inner model of workspace is constructed as a set of
reference views from the input flow, organized in an atlas of neighbourhoods.
Our approach is parallel to SLAM, but no coordinate transformation is involved
and no map of the workspace is build: the intention to avoid any coordinate
representation is the main bio-inspired motivation for this work.

Instead of a explicit use of coordinate transformation we deal with its implicit
substitute based on a local inversion of the cause-effect correspondence between
a robot control and a sensor response; to provide this inversion, a Kohonen
associative memory is used.

This work focuses on the logic of transformation of the inner model: adding
new reference views; agglomeration them as neighbourhoods; switching a current
neighbourhood; adding a new neighbourhood into the atlas and merging some
neighbourhoods detecting a loop closure on a robot trajectory. Two tests govern
learning the inner model: test on reachability of a current view from a reference
view, and test on a semantic similarity of two views. The former decides whether
a control exists that would provide a needed change of view; the latter determines
if robot still belongs to a current neighbourhood. Only similar reference views
(no ‘heavy change’ between them) constitute a neighbourhood.

The logic of creation of the inner model was tested on a virtual robot in a
2D workspace. The flow of input views in this case is represented by 1D-range
images. For this kind of virtual sensor the detection of heavy changes can be
effectively done, [14], by transforming each view to a string of singular points
and a subsequent comparison of such strings by a technique based on application
of the Levenshtein distance. The experiments carried out for this work give a
statistical confirmation of stabilization of the inner model of the workspace when
supervisor leads the robot many times along a cyclic trajectory.

This work proposes a novel method for automatic construction of a graph-
based model of workspace, formed by reference views. Using such models opens
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the way to solve navigation problems in natural terms. It can be done, [13],
by introducing an additional structure to represent the ordinary geographic
concepts. This issue presents a future research lines. Other lines for future works
are: replacement of the 1D robot sensor with other kinds of sensors; extension
of the technique from the 1D to 2D views, as well from a static to non-static
workspace, and more. As a challenging goal oriented to practice, we can mention
the development of a drone able to navigate automatically in a region after
learning it just by flying several times over it.
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